4. User Guides

4.1 For GPU Providers

Hardware Requirements

  1. GPU Specifications

    • Minimum Requirements:

      • CUDA 7.0+ compute capability

      • 8GB VRAM

      • 256-bit bandwidth

      • 250W TDP

      • Active cooling system

    • Recommended Specifications:

      • CUDA 8.0+ compute capability

      • 16GB VRAM

      • 384-bit bandwidth

      • 350W TDP

      • Advanced cooling solution

  2. Network Requirements

    • Minimum 10Mbps stable connection

    • Low latency (<100ms)

    • Stable uptime

    • Port accessibility

Setup Process

  1. Initial Configuration

    Step 1: Register your GPU
    - Provide GPU specifications
    - Run benchmark tests
    - Complete verification process
    
    Step 2: Configure Settings
    - Set availability schedule
    - Define pricing strategy
    - Configure resource limits
    - Set up monitoring tools
    
    Step 3: Deploy Node
    - Enable WebGPU access
    - Configure security settings
    - Set up payment details
    - Test connection
  2. Optimization Settings

    • Power management configuration

    • Thermal threshold settings

    • Performance optimization

    • Network configuration

Earnings Calculation

  1. Base Rate Formula:

    Earnings = (GPU_Power × Time × Base_Rate) × 
               (Demand_Multiplier + Performance_Bonus)
  2. Bonus Factors:

    • Uptime percentage

    • Performance metrics

    • User ratings

    • Long-term commitment

Performance Optimization

  1. Hardware Optimization

    • Driver updates

    • Cooling optimization

    • Power management

    • Memory management

  2. Network Optimization

    • Bandwidth allocation

    • Latency reduction

    • Connection stability

    • Traffic prioritization

4.2 For GPU Renters

Finding Suitable GPUs

  1. Search Criteria

    • Performance requirements

    • Budget constraints

    • Availability needs

    • Location preferences

  2. Comparison Tools

    • Performance benchmarks

    • Price comparison

    • Provider ratings

    • Historical data

Cost Estimation

  1. Pricing Factors

    - Base GPU rental rate
    - Duration multiplier
    - Performance requirements
    - Network usage
    - Additional services
  2. Cost Optimization

    • Bulk rental discounts

    • Long-term commitments

    • Off-peak usage

    • Resource optimization

Usage Guidelines

  1. Best Practices

    - Monitor resource usage
    - Schedule tasks efficiently
    - Maintain stable connection
    - Regular performance checks
  2. Resource Management

    • Task scheduling

    • Load balancing

    • Error handling

    • Performance monitoring

4.3 For AI Model Users

Model Selection

  1. Evaluation Criteria

    - Model architecture
    - Performance metrics
    - Resource requirements
    - Cost implications
  2. Use Case Matching

    • Task requirements

    • Performance needs

    • Budget constraints

    • Scaling considerations

Integration Guide

  1. API Integration

    // Example API integration
    const neurolovClient = new NeurolovClient({
      apiKey: 'your-api-key',
      modelId: 'model-identifier',
      config: {
        maxRetries: 3,
        timeout: 30000
      }
    });
  2. SDK Implementation

    // Example SDK usage
    import { NeurolovSDK } from '@neurolov/sdk';
    
    const sdk = new NeurolovSDK({
      credentials: 'your-credentials',
      region: 'preferred-region'
    });

Training Process

  1. Data Preparation

    • Dataset requirements

    • Preprocessing steps

    • Validation methods

    • Quality checks

  2. Training Configuration

    - Hyperparameter selection
    - Resource allocation
    - Monitoring setup
    - Performance metrics

Results & Analytics

  1. Performance Monitoring

    • Real-time metrics

    • Cost tracking

    • Resource utilization

    • Error analysis

  2. Optimization Tools

    • Performance tuning

    • Resource optimization

    • Cost efficiency

    • Scaling options

Common Issues & Solutions

  1. Performance Issues

    Problem: Low inference speed
    Solution: 
    - Check GPU utilization
    - Optimize batch size
    - Verify network connection
    - Monitor resource allocation
  2. Resource Management

    Problem: High resource consumption
    Solution:
    - Implement load balancing
    - Optimize model architecture
    - Use caching strategies
    - Monitor memory usage

Last updated

Was this helpful?